Home
Class 11
MATHS
If theta is the amplitude of (a+ib)/(a-i...

If `theta` is the amplitude of `(a+ib)/(a-ib)`, then `tantheta` equals:

A

`(a)/(a^(2)+b^(2))`

B

`(b)/(a^(2)+b^(2))`

C

`(2ab)/(a^(2)-b^(2))`

D

`(2a)/(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \theta \) where \( \theta \) is the amplitude (or argument) of the complex number \( \frac{a + ib}{a - ib} \). ### Step-by-Step Solution: 1. **Identify the Complex Numbers**: Let \( z_1 = a + ib \) and \( z_2 = a - ib \). 2. **Use the Property of Argument**: The argument of a quotient of two complex numbers can be expressed as: \[ \text{arg}\left(\frac{z_1}{z_2}\right) = \text{arg}(z_1) - \text{arg}(z_2) \] Therefore, we have: \[ \theta = \text{arg}(z_1) - \text{arg}(z_2) \] 3. **Find the Arguments**: - For \( z_1 = a + ib \): \[ \text{arg}(z_1) = \tan^{-1}\left(\frac{b}{a}\right) \] - For \( z_2 = a - ib \): \[ \text{arg}(z_2) = \tan^{-1}\left(\frac{-b}{a}\right) = -\tan^{-1}\left(\frac{b}{a}\right) \] 4. **Substituting the Arguments**: Now substituting these into the equation for \( \theta \): \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) - \left(-\tan^{-1}\left(\frac{b}{a}\right)\right) = \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{b}{a}\right) = 2\tan^{-1}\left(\frac{b}{a}\right) \] 5. **Using the Double Angle Formula for Tangent**: We know that: \[ \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)} \] Here, let \( \alpha = \tan^{-1}\left(\frac{b}{a}\right) \), so: \[ \tan(\alpha) = \frac{b}{a} \] 6. **Substituting into the Double Angle Formula**: Now substituting \( \tan(\alpha) \) into the double angle formula: \[ \tan(\theta) = \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)} = \frac{2\left(\frac{b}{a}\right)}{1 - \left(\frac{b}{a}\right)^2} \] 7. **Simplifying the Expression**: Simplifying the right-hand side: \[ \tan(\theta) = \frac{2\frac{b}{a}}{\frac{a^2 - b^2}{a^2}} = \frac{2b}{a} \cdot \frac{a^2}{a^2 - b^2} = \frac{2ab}{a^2 - b^2} \] ### Final Result: Thus, we find that: \[ \tan \theta = \frac{2ab}{a^2 - b^2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS FILL IN THE BLANKS (B)|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

tan (i log ((a + ib) / / a-ib))) =

If tantheta=(a)/(b) , then bcos2theta+asin2theta is equal to

If tantheta+(1)/(tantheta)=2 then the value of tan^(2)theta+(1)/(tan^(2)theta) is equal to :

If I is the incenter of a triangle ABC,then the ratio IA IB IC is equal to

If sec theta =x+1/(4x) , then tantheta + sec theta is equal to

If (4+2i)(1+2i)=A+iB, then

The value of (tan(i*log((a-ib)/(a+ib)))) is

If sqrt(a+ib)=x+iy , then value of sqrt(a-ib) is:

If a + ib = c + id , then

If I is the incentre of a !ABC , then IA:IB:IC is equal to