Home
Class 11
MATHS
Simplify: sqrt((-x)/(16))+sqrt((-x)/(25)...

Simplify: `sqrt((-x)/(16))+sqrt((-x)/(25))-sqrt((-x)/(36))`, where 'x' is a positive real number.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{\frac{-x}{16}} + \sqrt{\frac{-x}{25}} - \sqrt{\frac{-x}{36}} \), where \( x \) is a positive real number, we will follow these steps: ### Step 1: Rewrite the square roots Since \( x \) is a positive real number, \( -x \) is negative. We can express the square roots in terms of \( i \) (the imaginary unit), as follows: \[ \sqrt{\frac{-x}{16}} = \sqrt{-1} \cdot \sqrt{\frac{x}{16}} = i \cdot \frac{\sqrt{x}}{4} \] \[ \sqrt{\frac{-x}{25}} = \sqrt{-1} \cdot \sqrt{\frac{x}{25}} = i \cdot \frac{\sqrt{x}}{5} \] \[ \sqrt{\frac{-x}{36}} = \sqrt{-1} \cdot \sqrt{\frac{x}{36}} = i \cdot \frac{\sqrt{x}}{6} \] ### Step 2: Substitute back into the expression Now we can substitute these back into the original expression: \[ \sqrt{\frac{-x}{16}} + \sqrt{\frac{-x}{25}} - \sqrt{\frac{-x}{36}} = i \cdot \frac{\sqrt{x}}{4} + i \cdot \frac{\sqrt{x}}{5} - i \cdot \frac{\sqrt{x}}{6} \] ### Step 3: Factor out \( i \sqrt{x} \) We can factor out \( i \sqrt{x} \): \[ = i \sqrt{x} \left( \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \right) \] ### Step 4: Find a common denominator To simplify the expression inside the parentheses, we need a common denominator. The least common multiple of 4, 5, and 6 is 60. We can rewrite each fraction: \[ \frac{1}{4} = \frac{15}{60}, \quad \frac{1}{5} = \frac{12}{60}, \quad \frac{1}{6} = \frac{10}{60} \] ### Step 5: Combine the fractions Now we can combine these fractions: \[ \frac{15}{60} + \frac{12}{60} - \frac{10}{60} = \frac{15 + 12 - 10}{60} = \frac{17}{60} \] ### Step 6: Write the final expression Now substituting back, we have: \[ = i \sqrt{x} \cdot \frac{17}{60} = \frac{17 \sqrt{x}}{60} i \] Thus, the simplified expression is: \[ \frac{17 \sqrt{x}}{60} i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Simplify sqrt(-16)xxsqrt(-25) .

Simplify :(sqrt((225)/(729))-sqrt((25)/(144)))+sqrt((16)/(81))

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)

Simplify: (x+sqrt(x-1))^6+(x-sqrt(x-1))^6

If sqrt(x+(x)/(y))=x sqrt((x)/(y)), where x and y are positive real numbers,then y is equal to x+1 (b) x-1(c)x^(2)+1(d)x^(2)-1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Simplify : 1/ ( 1 + sqrt (x) )

If x=5sqrt(-25)sqrt(-36), then x is equal to