Home
Class 11
MATHS
For any positive integer n, find the val...

For any positive integer n, find the value of `i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( i^{n} + i^{n+1} + i^{n+2} + i^{n+3} + i^{n+4} + i^{n+5} + i^{n+6} + i^{n+7} \), we can follow these steps: ### Step 1: Factor out \( i^n \) We start by factoring out \( i^n \) from the expression: \[ i^{n} + i^{n+1} + i^{n+2} + i^{n+3} + i^{n+4} + i^{n+5} + i^{n+6} + i^{n+7} = i^n (1 + i + i^2 + i^3 + i^4 + i^5 + i^6 + i^7) \] **Hint:** Look for common factors in the terms to simplify the expression. ### Step 2: Identify the powers of \( i \) Recall the powers of \( i \): - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and this pattern repeats every 4 terms) Using this, we can express \( i^4, i^5, i^6, \) and \( i^7 \) in terms of \( i^0, i^1, i^2, \) and \( i^3 \): - \( i^4 = 1 \) - \( i^5 = i \) - \( i^6 = -1 \) - \( i^7 = -i \) ### Step 3: Substitute the values into the expression Now substitute these values back into the expression: \[ 1 + i + (-1) + (-i) + 1 + i + (-1) + (-i) \] ### Step 4: Simplify the expression Now, simplify the expression: \[ (1 - 1 + 1 - 1) + (i - i + i - i) = 0 + 0 = 0 \] ### Step 5: Combine with the factored term Thus, we have: \[ i^n (1 + i + i^2 + i^3 + i^4 + i^5 + i^6 + i^7) = i^n \cdot 0 = 0 \] ### Final Result The value of \( i^{n} + i^{n+1} + i^{n+2} + i^{n+3} + i^{n+4} + i^{n+5} + i^{n+6} + i^{n+7} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

For a positive integer n, find the value of (1-i)^(n)(1-(1)/(i))^(n)

For a positive integer n, what is the value of i^(4n+1) ?

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

For any positive integer n, prove that: i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)=0 .

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

If n is any positive integer,write the value of (i^(4n+1)-i^(4n-1))/(2)

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

If m,n,p,q are consecutive integers then the value of i^(m)+i^(n)+i^(p)+i^(q) is