Home
Class 11
MATHS
If x+iy=sqrt((a+ib)/(c+id)), then find t...

If `x+iy=sqrt((a+ib)/(c+id))`, then find the value of `x^(2)+y^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x + iy = \sqrt{\frac{a + ib}{c + id}} \) and find the value of \( x^2 + y^2 \), we can follow these steps: ### Step 1: Take the modulus of both sides We start by taking the modulus of both sides of the equation: \[ |x + iy| = \left| \sqrt{\frac{a + ib}{c + id}} \right| \] ### Step 2: Use the property of modulus We know that the modulus of a complex number \( z = x + iy \) is given by \( |z| = \sqrt{x^2 + y^2} \). Therefore, we can write: \[ \sqrt{x^2 + y^2} = \left| \sqrt{\frac{a + ib}{c + id}} \right| \] ### Step 3: Simplify the right side Using the property of modulus for square roots, we have: \[ \left| \sqrt{\frac{a + ib}{c + id}} \right| = \sqrt{\left| \frac{a + ib}{c + id} \right|} = \sqrt{\frac{|a + ib|}{|c + id|}} \] ### Step 4: Calculate the modulus of the complex numbers Now, we calculate the modulus of \( a + ib \) and \( c + id \): \[ |a + ib| = \sqrt{a^2 + b^2} \] \[ |c + id| = \sqrt{c^2 + d^2} \] ### Step 5: Substitute back into the equation Substituting these values back, we get: \[ \sqrt{x^2 + y^2} = \sqrt{\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}} \] ### Step 6: Square both sides Now, squaring both sides to eliminate the square root gives: \[ x^2 + y^2 = \frac{a^2 + b^2}{c^2 + d^2} \] ### Final Result Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{\frac{a^2 + b^2}{c^2 + d^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If x+iy=sqrt((a+ib)/(c+id)), then write the value of (x^(2)+y^(2))^(2)

If x=2+sqrt(2) and y=2-sqrt(2) , then find the value of (x^(2)+y^(2)) .

If sqrt(3)+i=(a+ib)(c+id), then find the value of tan^(-1)(b/a)+tan^(-1)(d/c)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If a + ib = sqrt((u + iv)/(x + iy)) then the value of a^2 + b^2 is:

If (x+iy)=sqrt((a+ib)/(c+id)) then prove that (x^(2)+y^(2))^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))

If x-iy=sqrt((a-ib)/(c-id)) then prove that x^(2)+y^(2)=(a^(2)+b^(2))/(c^(2)+d^(2))

If ((a^(2)+1)/(2a-i))^(2)=x+iy, find the value of x^(2)+y^(2)