Home
Class 11
MATHS
If z=3+4i, then find |z| and z^(-1)....

If z=3+4i, then find |z| and `z^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the modulus of the complex number \( z = 3 + 4i \) and then find its inverse \( z^{-1} \). ### Step 1: Find the modulus of \( z \) The modulus of a complex number \( z = a + bi \) is given by the formula: \[ |z| = \sqrt{a^2 + b^2} \] For \( z = 3 + 4i \): - Here, \( a = 3 \) and \( b = 4 \). Now, we can calculate: \[ |z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 2: Find the inverse of \( z \) The inverse of a complex number \( z \) is given by: \[ z^{-1} = \frac{1}{z} = \frac{1}{3 + 4i} \] To simplify this expression, we will multiply the numerator and the denominator by the conjugate of the denominator: \[ z^{-1} = \frac{1}{3 + 4i} \cdot \frac{3 - 4i}{3 - 4i} = \frac{3 - 4i}{(3 + 4i)(3 - 4i)} \] Now, we need to calculate the denominator: \[ (3 + 4i)(3 - 4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] Thus, we have: \[ z^{-1} = \frac{3 - 4i}{25} = \frac{3}{25} - \frac{4}{25}i \] ### Final Results 1. The modulus of \( z \) is \( |z| = 5 \). 2. The inverse of \( z \) is \( z^{-1} = \frac{3}{25} - \frac{4}{25}i \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.2|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

(i) If z=3+4i, then find modulus of z i.e., |z|. (ii) If z=4+3i, then find modulus of z i.e., |z|.

if z_(1)=2+3i, z_(2)=1-iand z_(3) = 3+ 4i ,then find z_(1)z_(2) +z_(3)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If Z=(7+i)/(3+4i) , then find Z^14 .

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)

If z_1 =-3+ixy, z_2 =x+y+4i and z_1 = barz_2 then find x and y .

|z-1| + |z+3|=8 then find |z-4|