Home
Class 11
MATHS
Find the value of 'k' if for the complex...

Find the value of 'k' if for the complex numbers `z_(1) and z_(2)`.
`|1-bar(z_(1))z_(2)|^(2)-|z_(1)-z_(2)|^(2)=k(1-|z_(1)|^(2))(1-|z_(2)|^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the equation \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |z_2|^2), \] we will simplify both sides step by step. ### Step 1: Expand the left-hand side We start with the left-hand side: \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2. \] Using the property \( |z|^2 = z \overline{z} \), we can rewrite this as: \[ (1 - \overline{z_1} z_2)(1 - z_1 z_2) - (z_1 - z_2)(\overline{z_1} - \overline{z_2}). \] ### Step 2: Simplify \( |1 - \overline{z_1} z_2|^2 \) Calculating \( |1 - \overline{z_1} z_2|^2 \): \[ |1 - \overline{z_1} z_2|^2 = (1 - \overline{z_1} z_2)(1 - z_1 z_2) = 1 - \overline{z_1} z_2 - z_1 \overline{z_2} + |z_1|^2 |z_2|^2. \] ### Step 3: Simplify \( |z_1 - z_2|^2 \) Now, calculate \( |z_1 - z_2|^2 \): \[ |z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1} - \overline{z_2}) = |z_1|^2 - z_1 \overline{z_2} - \overline{z_1} z_2 + |z_2|^2. \] ### Step 4: Combine the results Now substitute these results back into the left-hand side: \[ (1 - \overline{z_1} z_2 - z_1 \overline{z_2} + |z_1|^2 |z_2|^2) - (|z_1|^2 - z_1 \overline{z_2} - \overline{z_1} z_2 + |z_2|^2). \] This simplifies to: \[ 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2. \] ### Step 5: Right-hand side Now, we simplify the right-hand side: \[ k(1 - |z_1|^2)(1 - |z_2|^2). \] Expanding this gives: \[ k(1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2). \] ### Step 6: Set the two sides equal Now we set the left-hand side equal to the right-hand side: \[ 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 = k(1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2). \] ### Step 7: Solve for \( k \) To find \( k \), we can compare coefficients. Since both sides are equal for all \( z_1 \) and \( z_2 \), we can deduce that: \[ k = 1. \] Thus, the value of \( k \) is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise REVISION EXERCISE|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER|20 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If for complex numbers z_(1) and z_(2) and |1-bar(z_(1))z_(2)|^(2)-|z_(1)-z_(2)|^(2)=k(1-|z_(1)|^(2))(1-|z_(2)|^(2)) then k is equal to:

For all complex numbers z_(1) and z_(2) , prove that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2(|z_(1)|^(2)+|z_(2)|^(2)) .

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

If z_(-)1 and z_(-)2 are any two complex numbers show that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2|z_(1)|^(2)+2|z_(2)|^(2)

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

For any two complex numbers z_(1) and z_(2) prove that: |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|backslash z_(2)|^(2)+2Rebar(z)_(1)z_(2)

For any two non zero complex numbers z_(1) and z_(2) if z_(1)bar(z)_(2)+z_(2)bar(z)_(1)=0 then amp(z_(1))-amp(z_(2)) is