Home
Class 11
MATHS
Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi...

Convert `z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3))` in polar form.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \( z = \frac{i - 1}{\cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)} \) into polar form, we will follow these steps: ### Step 1: Identify the Denominator The denominator can be expressed using Euler's formula: \[ \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) = e^{i\frac{\pi}{3}} \] Calculating the values: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, the denominator is: \[ \frac{1}{2} + i \frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}} \] ### Step 2: Rationalize the Numerator The numerator is \( i - 1 \). We can express this in the form \( a + bi \): \[ i - 1 = -1 + i \] Now, we can find the modulus and argument of this complex number. ### Step 3: Calculate the Modulus of the Numerator The modulus \( r \) of \( -1 + i \) is given by: \[ r = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 4: Calculate the Argument of the Numerator The argument \( \theta \) can be found using: \[ \tan(\theta) = \frac{b}{a} = \frac{1}{-1} = -1 \] This corresponds to an angle in the second quadrant. Therefore, the angle is: \[ \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Step 5: Express the Numerator in Polar Form Thus, we can express the numerator in polar form: \[ -1 + i = \sqrt{2} e^{i\frac{3\pi}{4}} \] ### Step 6: Combine the Results Now substituting back into the expression for \( z \): \[ z = \frac{\sqrt{2} e^{i\frac{3\pi}{4}}}{e^{i\frac{\pi}{3}}} \] Using the property of exponents: \[ z = \sqrt{2} e^{i\left(\frac{3\pi}{4} - \frac{\pi}{3}\right)} \] ### Step 7: Simplify the Argument To simplify the argument: \[ \frac{3\pi}{4} - \frac{\pi}{3} = \frac{9\pi}{12} - \frac{4\pi}{12} = \frac{5\pi}{12} \] Thus, we have: \[ z = \sqrt{2} e^{i\frac{5\pi}{12}} \] ### Step 8: Final Polar Form The polar form of \( z \) is: \[ z = \sqrt{2} \left( \cos\left(\frac{5\pi}{12}\right) + i \sin\left(\frac{5\pi}{12}\right) \right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

cos(pi/4)+isin(-pi/4)=?

-2(cos(pi/3)+isin(pi/3))=?

Convert the complex number 3(cos(5(pi)/(3))-i sin((pi)/(6))) into polar form.

cos((3pi)/4)-isin((3pi)/4)=?