Home
Class 11
MATHS
Write the following in the form x+iy: ...

Write the following in the form x+iy:
(i) `(3+2i)(2-i)`
(ii) `2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)`.
(iii) `((3-2i)(2+3i))/((1+2i)(2-i))`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) \((3 + 2i)(2 - i)\) **Step 1:** Use the distributive property (FOIL method) to expand the expression. \[ (3 + 2i)(2 - i) = 3 \cdot 2 + 3 \cdot (-i) + 2i \cdot 2 + 2i \cdot (-i) \] **Step 2:** Calculate each term. \[ = 6 - 3i + 4i - 2i^2 \] **Step 3:** Substitute \(i^2 = -1\). \[ = 6 - 3i + 4i + 2 \] **Step 4:** Combine like terms. \[ = (6 + 2) + (-3i + 4i) = 8 + i \] **Final Answer:** The expression in the form \(x + iy\) is \(8 + i\). --- ### (ii) \(2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25}\) **Step 1:** Substitute the powers of \(i\) using the known values: - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) (and thus \(i^n\) cycles every 4) Calculate each term: - \(i^{16} = (i^4)^4 = 1\) - \(i^{19} = i^{4 \cdot 4 + 3} = -i\) - \(i^{25} = i^{4 \cdot 6 + 1} = i\) **Step 2:** Substitute these values into the expression. \[ = 2(-1) + 6(-i) + 3(1) - 6(-i) + 4(i) \] **Step 3:** Simplify each term. \[ = -2 - 6i + 3 + 6i + 4i \] **Step 4:** Combine like terms. \[ = (-2 + 3) + (-6i + 6i + 4i) = 1 + 4i \] **Final Answer:** The expression in the form \(x + iy\) is \(1 + 4i\). --- ### (iii) \(\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\) **Step 1:** Calculate the numerator. \[ (3 - 2i)(2 + 3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] \[ = 6 + 9i - 4i - 6i^2 \] \[ = 6 + 5i + 6 = 12 + 5i \] **Step 2:** Calculate the denominator. \[ (1 + 2i)(2 - i) = 1 \cdot 2 + 1 \cdot (-i) + 2i \cdot 2 + 2i \cdot (-i) \] \[ = 2 - i + 4i - 2i^2 \] \[ = 2 + 3i + 2 = 4 + 3i \] **Step 3:** Now we have \(\frac{12 + 5i}{4 + 3i}\). To simplify, multiply the numerator and denominator by the conjugate of the denominator. \[ \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \] **Step 4:** Calculate the new numerator. \[ = 12 \cdot 4 + 12 \cdot (-3i) + 5i \cdot 4 + 5i \cdot (-3i) \] \[ = 48 - 36i + 20i - 15 \] \[ = (48 - 15) + (-36i + 20i) = 33 - 16i \] **Step 5:** Calculate the new denominator. \[ = 4^2 - (3i)^2 = 16 + 9 = 25 \] **Step 6:** Combine the results. \[ \frac{33 - 16i}{25} = \frac{33}{25} - \frac{16}{25}i \] **Final Answer:** The expression in the form \(x + iy\) is \(\frac{33}{25} - \frac{16}{25}i\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Express the following in the form a +ib:(3+5i)(2+6i)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Write the following in the form x+iy: (i) (2i)^(3) (ii) i^(-35) (iii) (-i)(2i)(-(1)/(8)i)^(3) .

Write the following in the form of ordered pair : (i) 3-2i (ii) a+bi (iii) -3-2i

Express the following in the form of a + ib . (i) ( 1/2 + 3i)^(2) (ii) ( 2+ 3i) ( 2-3i)

simplify the following 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)

Express the following in the form of a+ib (2+3i)/(5-4i)+(2-3i)/(5+4i)

Express the following in the form a +ib:1+2i+3i^(2)1-2i+3i^(2)

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Express the following in the form of a" "+" "b i : (i) (-5i)(1/8i) (ii) (-i)(2i)(-1/8i)^3

MODERN PUBLICATION-COMPLEX NUMBERS-FREQUENTLY ASKED QUESTIONS
  1. Find real and imaginary parts of (1-i)/(1+i).

    Text Solution

    |

  2. Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+...

    Text Solution

    |

  3. (a) Express (1+7i)/((2-i)^(2)) in the form a+ib. (b) Reduce (1)/(1-4...

    Text Solution

    |

  4. Perform the indicated operation and give your anwer in the form x+iy, ...

    Text Solution

    |

  5. Express each one of the following in the standard form a+i b :(1/(1-2i...

    Text Solution

    |

  6. Prove that: (i) [((3+2i)/(2-5i))+((3-2i)/(2+5i))] is rational (ii)...

    Text Solution

    |

  7. If z=2-3i show that z^2=4z+13=0 and hence find the value of 4z^3-3z^2+...

    Text Solution

    |

  8. Show that a real value of x\ will satisfy the equation (1-i x)/(1+i x...

    Text Solution

    |

  9. If y=sqrt(x^2+6x+8), show that one value of sqrt(1+i y)+sqrt(1-i y)[i=...

    Text Solution

    |

  10. If a+i b=(c+i)/(c-i) , where c is real, prove that:a^2+b^2=1a n d b/a=...

    Text Solution

    |

  11. If (a+ib)/(c+id)=x+iy, show that: x^(2)+y^(2)=(a^(2)+b^(2))/(c^(2)+d...

    Text Solution

    |

  12. Find the conjugate and modulus of complex number 7-24i.

    Text Solution

    |

  13. Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)).

    Text Solution

    |

  14. Prove that for any complex number z, the product zoverline(z) is alway...

    Text Solution

    |

  15. If z=((sqrt(5))/(2)+(i)/(2))^(5)+((sqrt(5))/(2)-(i)/(2))^(5), the prov...

    Text Solution

    |

  16. Write the addtive inverse of the complex number -2+3i.

    Text Solution

    |

  17. Find the additive inverse and reciprocal of complex number 3-4i.

    Text Solution

    |

  18. Find the multiplicative inverse of the following: (i) 3+4i (ii) (5...

    Text Solution

    |

  19. Inverse of (3+4i)/(4-5i)

    Text Solution

    |

  20. If z=(1-i)^(6)+(1-i), then find the modulus of z (i.e., |z|) and multi...

    Text Solution

    |