Home
Class 11
MATHS
For any positive integer n, prove that: ...

For any positive integer n, prove that:
`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)=0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|26 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

For any positive integer n, find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7) .

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

For a positive integer n, what is the value of i^(4n+1) ?

For a positive integer n, find the value of (1-i)^(n)(1-(1)/(i))^(n)

If n is any positive integer,write the value of (i^(4n+1)-i^(4n-1))/(2)

Prove that : I_(n)^(-1)=I_(n)

Prove that : adj. I_(n)=I_(n)

i^(n+100)+i^(n+50)+i^(n+48)+i^(n+46)