Home
Class 11
MATHS
If a^(2)+b^(2)=1, prove that (1+b+ia)/(1...

If `a^(2)+b^(2)=1`, prove that `(1+b+ia)/(1+b-ia)=b+ia`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|26 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=1th en (1+b+ia)/(1+b-ia)=1b.2cb+iad.a+ib

If a^(2)+b^(2)=1. Then (1+b+ia)/(1+b-ia)=

If a^(2),b^(2),c^(2) are in AP then prove that (1)/(a+b),(1)/(c+b),(1)/(a+c) are also in AP.

If A+B=(pi)/(4), prove that: (1+tan A)(1+tan B)=2(cot A-1)(cot B-1)=2

If (a+ib)^(5)=" p "+" iq ," where " "i=sqrt(-1), prove that (b+ia)^(5)=q+ip.

If z=(a+ib)^(5)+(b+ia)^(5) then prove that Re(z)=Im(z), where a,b in R.

If a+b=1, and a,b>0, then prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If the points (a_(1),b_(1))m(a_(2),b_(2))" and " (a_(1)-a_(2),b_(2)-b_(2)) are collinear, then prove that a_(1)/a_(2)=b_(1)/b_(2)

If a+b=1,a>0, prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a,b,c are real numbers and z is a complex number such that,a^(2)+b^(2)+c^(2)=1 and b+ic=(1+a)z then (1+iz)/(1-iz) equals.(a) (b-ic)/(1-ia) (b) (a+ib)/(1+c) (c) (1-c)/(a-ib)( d) (1+a)/(b+ic)