Home
Class 11
MATHS
If (secA+tanA)(secB+tanB)(secC+tanC)=(se...

If `(secA+tanA)(secB+tanB)(secC+tanC)=``(secA-tanA)(secB-tanB)(secC-tanC),` prove that the value of each side is +-1.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC) , prove that value of each side is pm1 .

If (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB)(secC-tanC) , prove that value of each side is pm1 .

If (sec A +tanA)(secB+tanB)(secC+tanC)=(sec A -tanA)(sec B - tanB) (sec C-tanC) , Prove that the value of each side is +-1 .

if (secA+tanA)(secB+tanB)(secC+tanC)=(secA-tanA)(secB-tanB) (secC-tanC) Prove that each of the side is equal to +-1.

If (secA-tanA)(secB-tanB)(secC+tanC)=(secA+tanA)(secB+tanB)(secC-tanC) then each side is equal to

If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB + tanB)(secC + tanC) , then value of p is:

Prove that (1)/(secA+tanA)=secA-tanA

Prove: (secA+tanA-1)(secA-tanA+1)=2tanA

Prove: (secA+tanA-1)(secA-tanA+1)=2tanA

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)