Home
Class 11
MATHS
If Un = 2 cos n theta, then U1 Un-U(n-...

If `U_n = 2 cos n theta`, then `U_1 U_n-U_(n-1)` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to.......... A) -1 B) 12 sin ^(2) theta cos ^(2) theta C) 1 D) 12 tan ^(2) theta cos ^(2) theta

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If u_(n)=2 cos n theta , then show that u_(n+1)= u_(1)u_(n)-u_(n-1) , hence, show that 2 cos 5 theta= u_(1)^(5)- 5u_(1)^(3)+ 5u_(1)

If u_(n)=2Cos^(n) theta then show that u_(1)u_(n)-u_(n-1)= u_(n+1)

If u_(n) = cos^(n) theta + sin^(n) theta then 2u_(6)-3u_(4)=

If u_n= sin (ntheta) sec^ntheta , v_n= cos(ntheta)sec^ntheta , n in N , n!=1 , then (v_n-v_(n-1))/v_(n-1)+1/n(u_n/v_n) =