Home
Class 12
MATHS
Given that p = tanalpha+tanbeta, andq=co...

Given that p = `tanalpha+tanbeta, andq=cotalpha+cotbeta`, then what is `((1)/(p)-(1)/(q))`equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If p = sectheta - tan theta and q= "cosec"theta + cot theta , then what is p+q(p-1) equal to?

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

(1-tanalphatanbeta)^2+(tanalpha+tanbeta)^2=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

If alphaandbeta are such that tanalpha=2tanbeta , then what is sin(alpha+beta) equal to ?

Prove that tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)

Prove that tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)