Home
Class 10
MATHS
lim(x rarr0)((a^(x)-1)/(x))=log a...

lim_(x rarr0)((a^(x)-1)/(x))=log a

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Show that : lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Given that lim_(x rarr 0) (a^x - 1)/x = log a and lim_(x rarr 0) (tan x)/x = 1 Evaluate lim_(x rarr 0) (2^x - 1)/x

Given that lim_(x rarr 0) (a^x - 1)/x = log a and lim_(x rarr 0) (tan x)/x = 1 Evaluate lim_(x rarr 0) (5^x - 1)/x

lim_(x rarr0)(log(1+x))/(x)=1

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

lim_(x rarr0)(cotx)^(x)

lim_(x rarr0)(|x|)/(x)