Home
Class 11
PHYSICS
The mass per unit length (lambda) of a n...

The mass per unit length `(lambda)` of a non-uniform rod varies linearly with distance x from its one end accrding to the relation, `lambda = alpha x`, where `alpha` is a constant. Find the centre of mass as a fraction of its length L.

Promotional Banner

Similar Questions

Explore conceptually related problems

A thin bar of length L has a mass per unit length lambda , that increases linerarly with distance from one end. If its total mass is M and its mass per unit length at the lighter end is lambda_(0) , then the distance of the centre of mass from the lighter end is

A thin bar of length L has a mass per unit length lambda , that increases linerarly with distance from one end. If its total mass is M and its mass per unit length at the lighter end is lambda_(0) , then the distance of the centre of mass from the lighter end is

A rod of length L is placed along the x-axis between x = 0 and x = L. The linear density (mass/ length) lambda of the rod varies with the distance x from the origin as lambda = Rx . Here, R is a positive constant. Find the position of centre of mass of this rod.

The mass per unit length of a non-uniform rod of length L is given by mu = lambdax^2 , where lambda is constant and x is distance from one end of the rod. The distance of the center of mass of rod from this end is

The mass per unit length of a non-uniform rod of length L is given by mu= lamdaxx2 ​, where lamda is a constant and x is distance from one end of the rod. The distance of the center of mass of rod from this end is :-

The mass per unit length of a non - uniform rod of length L is given mu = lambda x^(2) , where lambda is a constant and x is distance from one end of the rod. The distance of the center of mas of rod from this end is

The mass per unit length of a non- uniform rod OP of length L varies as m=k(x)/(L) where k is a constant and x is the distance of any point on the rod from end 0 .The distance of the centre of mass of the rod from end 0 is

AB is a uniformly shaped rod of length L and cross sectional are S, but its density varies with distance from one end A of the rod as rho=px^(2)+c , where p and c are positive constants. Find out the distance of the centre of mass of this rod from the end A.

Linear mass density of a rod AB(of length 10 m) varies with distance x from its end A as lambda = lambda_0x^3 ( lambda_0 is positive constant) . Distance of centre of mass of the rod , from end B is

Linear mass density of a rod AB ( of length 10 m) varied with distance x from its end A as lambda = lambda_0 x^3 ( lamda_0 is poitive constant). Distance of centre of mass the rod, form end B is