Home
Class 11
MATHS
" 1."(i)(dy)/(dx)=e^(x+y)...

" 1."(i)(dy)/(dx)=e^(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=e^(x-y)+1

(dy)/(dx)+1=e^(x-y)

Find the general solutions of the following differential equations. (i) (dy)/(dx) = e^(x+y) (ii) (dy)/(dx) = e^(y-x) (iii) (dy)/(dx) = (xy+y)/(yx+x) (iv) y(1+x)dx+x(1+y)dy = 0

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

(x-y)(1-(dy)/(dx))=e^(x)

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .