Home
Class 11
MATHS
" If "f(x)=(1)/(x)," prove that "lim(h r...

" If "f(x)=(1)/(x)," prove that "lim_(h rarr0)(f(x+h)-f(x))/(h)=-(1)/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

Prove that: lim_(h rarr 0) (log(x+h)-logx)/(h)=(1)/(x)

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not

lim_(h rarr0)(sin(x+h)-sinx)/(h)

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

lim_(h rarr0)((x+h)^(x+h)-x^(x))/(h)=

lim_(h rarr0)((xsin x)(cosh-1))/h

lim_(h rarr0)((x+h)^((1)/(n))-x^((1)/(n)))/(h)

lim_(x rarr0)x((1)/(x+h)-(1)/(x))

lim_(x rarr0)x((1)/(x+h)-(1)/(x))