Home
Class 11
MATHS
If a, b, c are in geometric progression,...

If a, b, c are in geometric progression, then prove that :
`(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b, and c are in G.P.then prove that (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a,b,c,d are in geometric sequence then prove that (b-c)^(2) +(c-a)^(2) -(d-b)^(2)=(a-d)^2

If a, b, c are in geometric progression, then show that, (a^(2) + ab + b^(2))/(ab + bc + ca) = (a + b)/(b + c)

If a, b, c are in G.P., then prove that (1)/(a^(2)-b^(2))-(1)/(b^(2)-c^(2))=-(1)/(b^(2)) . [Hint : Put b = ar, c = ar^(2) ]

If a,b,c are in geometric progression then ((1)/(b)+ (1)/(c )-(1)/(a)) ((1)/(c ) + (1)/(a) - (1)/(b)) = ……..

If a, b, c, d are in GP, then prove that 1/((a^(2)+b^(2))), 1/((b^(2)+c^(2))), 1/((c^(2)+d^(2))) are in GP.

If a, b and c are in geometric progression then, a^(2), b^(2) and c^(2) are in ____ progression.

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

If a,b,c are in geometric progression and if a^((1)/(x))=b^((1)/(y))=c^((1)/(z)) , then prove that x,y,z are in arithmetic progression.

If a, b and c are in G.P. then prove that 1 a 2 - b 2 + 1 b 2 = 1 b 2 - c 2 . 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot