Home
Class 12
MATHS
If f is an odd function, show that: int-...

If `f` is an odd function, show that: `int_-a^a f(sinx)/(f(cosx)+f(sin^2x))dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)/(f(cosx)+f(sin^2x)dx

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

If f is an odd function and I=int_(-a)^(a)(f(sin x))/(f(cos x)+f (sin^(2)x))dx , then

If f is an odd function, then write the value of int_-a^a(f(sinx))/(f(cosx)+f(sin^2x))dx

If f is an odd function, then the value of I=int_(-a)^(a)(f(sinx))/(f(cosx)+f(sin^(2)x))dx is

If f is an odd function,then evaluate I=int_(-a)^(a)(f(sin x))/(f(cos x)+f(sin^(2)x))dx