Home
Class 10
MATHS
sum(k=0)^(5)(-1)^(k)2k...

`sum_(k=0)^(5)(-1)^(k)2k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If for n in N,sum_(k=0)^(2n)(-1)^(k)(2nC_(k))^(2)=A, then find the value of sum_(k=0)^(2n)(-1)^(k)(k-2n)(2nC_(k))^(2)

If (1+x+x^(2)+x^(3))^(5)=sum_(k=0)^(15)a_(k)x^(k), then sum_(k=0)^(7)a_(2k)

The value of the expression (sum_(r=0)^(10)C_(r))(sum_(k=0)^(10)(-1)^(k)(^^10C_(k))/(2^(k))) is :

Suppose m and n are positive integers and let S=sum_(k=0)^(n)(-1)^(k)(1)/(k+m+1)(nC_(k)) and T=sum_(k=0)^(m)(-1)^(k)1(k+n+1)(mC_(k)) then S-T is equal to

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

The value of int_(0)^(1)lim_(n rarr oo)sum_(k=0)^(n)(x^(k+2)2^(k))/(k!)dx is:

Let S_(k) , be the sum of an infinite geometric series whose first term is kand common ratio is (k)/(k+1)(kgt0) . Then the value of sum_(k=1)^(oo)(-1)^(k)/(S_(k)) is equal to

Evaluate sum_(k=0)^(5)k^(2)