Home
Class 12
MATHS
IF alpha , beta are the roots of x...

IF ` alpha , beta ` are the roots of ` x^2 +px +q=0` and ` alpha ^4 , beta ^4` are the roots of ` x ^2 - rx +s=0` then the equation `x^2-4qx +2q^2 -r=0` has always

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the real roots of x^(2) + px + q= 0 and alpha^(4), beta^(4) are the roots of x^(2) - rx + s = 0 , then the equation x^(2) - 4 q x + 2q^(2) - r = 0 has always

If alpha and beta the roots of x^(2) + px + q = 0 and alpha^(4), beta^(4) are the roots of x^(2) - rx + s = 0 , then the equation x^(2) - 4qx + 2q^(1) - r = 0 has always :

If alpha and beta are the ral roots of x ^(2) + px +q =0 and alpha ^(4), beta ^(4) are the roots of x ^(2) - rx+s =0. Then the equation x ^(2) -4qx+2q ^(2)-r =0 has always (alpha ne beta, p ne 0 , p,q, r, s in R) :

If alpha and beta are the ral roots of x ^(2) + px +q =0 and alpha ^(4), beta ^(4) are the roots of x ^(2) - rx+s =0. Then the equation x ^(2) -4qx+2q ^(2)-r =0 has always (alpha ne beta, p ne 0 , p,q, r, s in R) :

If alpha and beta are the roots of x^(2)+px+q=0and alpha^(4),beta^(4) are the roots of x^(2)-rx+s=0, then the equation x^(2)-4qx+2q^(2)-r=0 has always.A.one positive and one negative root B.two positive roots C.two negative root B.cannot say anything

If alpha,beta are the roots of x^(2)-px+r=0 and alpha+1,beta-1 are the roots of x^(2)-qx+r=0 ,then r is