Home
Class 12
MATHS
cos^(-1)(12/13)+sin^(-1)(3/5)="sin"^(-1)...

`cos^(-1)(12/13)+sin^(-1)(3/5)="sin"^(-1)56/65`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the Statement: "sin"^(-1)12/13-"sin"^(-1) 3/5 ="sin"^(-1) 33/65

Show that sin^-1 (3/5)+cos^-1(12/13)=cos^-1(33/65)=sin^-1(56/65)

Rectify the error if any in the following "sin"^(-1)4/(5)+"sin"^(-1)12/(13)+"sin"^(-1)33/(65) ="sin"^(-1)[4/(5)sqrt(1-44/(169))+12/(13)sqrt(1-16/(25))]+"sin"^(-1)33/(65) ="sin"^(-1)(56/(65))+"cos"^(-1)sqrt(1-(33/(65))^(2)) ="sin"^(-1)(56/(65))+"cos"^(-1)(56/(65))=pi/(2)

Prove that : cos^-1(12/13) + sin^-1(3/5) = cos^-1(33/65)

Prove that : sin^-1(12/13) + cos^-1(3/5) = sin^-1(56/65)

sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=