Home
Class 10
MATHS
Given F(1)=1, F(2)=3 and F(n)=F(n-1)+F(n...

Given `F_(1)=1, F_(2)=3 and F_(n)=F_(n-1)+F_(n-2)` then `F_(3)` is ____.

Promotional Banner

Similar Questions

Explore conceptually related problems

Given F_(1)=1, F_(2)=3 and F_(n)=F_(n-1)+F_(n-2) then F_(5) is

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

If a function F is such that F(0)=2 , F(1)=3 , F(n+2)=2F(n)-F(n+1) for n ge 0 , then F(5) is equal to

If a function F is such that F(0)=2 , F(1)=3 , F(n+2)=2F(n)-F(n+1) for n ge 0 , then F(5) is equal to

If f(1)=1 and f(n+1)=2 f(n)+1 , then f(n) is

Evalute :(5)/(3)sum_(k=1)^(oo)(F_(k))/(3^(k)); where F_(0)=0;F_(1)=1 and F_(n)=F_(n-1)+F_(n-2)

A function f is defined such that f(1)=2, f(2)=5, and f(n)=f(n-1)-f(n-2) for all integer values of n greater than 2. What is the value of f(4)?

Let f(1)=1 and f(n)=2 sum_(r=1)^(n-1)f(r) then sum_(n=1)^(m)f(n)=

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.