Home
Class 12
MATHS
in a triangle ABC, if A is (1, 2) and th...

in a triangle ABC, if A is `(1, 2)` and the equations of the medians through B and c are `x+ y= 5` and `x= 4` respectively then B must be:

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, coordinates of A are (1,2) and the equations of the medians through B and C are x+y=5 and x=4 respectively. Find the coordinates of B and C.

In a triangle ABC, co-ordinates of A are (1,2) and the equations to the medians through B and C are x+y=5 and x=4 respectively.Then the co-ordinates of B and C will be

In a triangle ABC, coordinate of A are (1,2) and the equations of the medians through B and C are respectively, x+y=5&x=4 . Then area of DeltaABC (in sq. units) is:

The vertex A of triangle ABC is at origin.The equation of median through B and C are 15x-4y=240 and 15x-52y+240=0 respectively.Then

In a triangle ABC if the equation of the medians AD and BE are 2x + 3y - 6=0 and 3x-2y-10=0 respectively and AD = 6, BE = 11, then find the area of the Triangle ABC : (A) 32 (B) 38 (C) 44 (D) 48

The vertex C of a triangle ABC is (4,-1) . The equation of altitude AD and Median AE are 2x-3y+12=0 and 2x+3y=0 respectively then slope of side AB is :

In a triangle ABC, if A-=(1,2) and the internal angle bisectors through B and C are y=x and y=-2x, then the inradius r of DeltaABC is