Home
Class 11
MATHS
If A+B+C=pi and sin(A+C/2)=ksin(C/2) the...

If `A+B+C=pi` and `sin(A+C/2)=ksin(C/2)` then `tanA/2tanB/2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi and sin(A +C/2)= ksin(C/2) , then tan(A/2).tan(B/2) is equal to

If A+B+C=pi and sin(A+(C)/(2))=k sin((C)/(2)), then tan((A)/(2))*tan((B)/(2)) is equal to

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)

In Dleta ABC if Tan B = (2Sin ASinC)/(Sin(A+C)) then TanA, TanB, TanC are in

If A+B+C=pi and cosA=cosB.cosC show that tanB+tanC=tanA

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A+B+C= pi and (sin 2 A + sin 2B + sin 2 C)/(sin A + sin B + sin C ) = lamda sin ((A)/(2)) sin ((B)/(2)) sin ((C )/(2)) , then the value of lamda must be

If A + B + C = pi , then show that sin (A + B + C)/( 2) = sin(A / 2) * cos "" (B + C)/( 2) + sin "" (B + C)/( 2) * cos "" (A) / (2)

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))