Home
Class 12
MATHS
If e^(y) +xy = e, the ordered pair ((dy...

If `e^(y) +xy = e`, the ordered pair ` ((dy)/(dx),(d^(2)y)/(dx^(2)))` at x = 0 is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

e^(y)+xy=e then orderd pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at y=1, is

If e^(y)+xy=e," then: "[(d^(2)y)/(dx^(2))]_(x=0) is equal to

If (dy)/(dx)+y=2e^(2x) , then y is equal to

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

If y=e^(2x) , then (d^2y)/(dx^2)*(d^2x)/(dy^2) is equal to

If e^(y)+xy=e^(2) then the value of (d^(2)y)/(dx^(2)) at x=0 is -

If e^(x+y) =xy then (dy)/(dx) =