Home
Class 12
MATHS
int(0)^(1) e^(2log x)dx=...

`int_(0)^(1) e^(2log x)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e )^(e^(2))log x dx =

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

int_(1)^(e) log (x) dx=

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_((1)/(e))^(e)|log x|dx=

What is int_(0)^(2) e^(ln) x dx equal to ?

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The value of the integral int_(1)^(e ) (log x)^(2)dx is -

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx