Home
Class 12
MATHS
Let f(x)=max{tanx, cotx}. Then the numbe...

Let `f(x)=max{tanx, cotx}`. Then the number of roots of the equation `f(x)=(1)/(2)" in "(0, 2pi)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=max{tanx, cotx}. Then the number of roots of the equation f(x)=1/(sqrt(3)) in (0,2pi) is

Let f(x)=max{tan x,cot x}. Then number of roots of the equation f(x)=(1)/(sqrt(3)) in (0,2 pi) is

Let f(x)= max{tanx, cotx} . Then number of roots of the equation f(x)= 1/sqrt(3) in (0,2pi) is (A) 2 (B) 4 (C) 0 (D) infinite

Let f(x)= max{tanx, cotx} . Then number of roots of the equation f(x)= 1/sqrt(3) in (0,2pi) is (A) 2 (B) 4 (C) 0 (D) infinite

The number of roots of the equation x+2tanx=pi/2 in the interval [0, 2pi] is

Let f be a differentiable function satisfying f '(x) =2 f(x) +10 AA x in R and f (0) =0, then the number of real roots of the equation f (x)+ 5 sec ^(2) x=0 ln (0, 2pi) is:

Let f be a differentiable function satisfying f '(x) =2 f(x) +10 AA x in R and f (0) =0, then the number of real roots of the equation f (x)+ 5 sec ^(2) x=0 ln (0, 2pi) is:

Let f(x)=max{tanx,cotx] then number of roots of equation the interval [0,2pi] satisfying f(x)=1/sqrt 3 is (A) 2(B) 4(C) 0 (D) infinte