Home
Class 10
MATHS
Prove: cosec^2A -cos^2 A =(sec^2A -sin...

Prove:
`cosec^2A -cos^2 A =(sec^2A -sin^2A)/(tan^2 A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (xi) cosec^2 A - cos^2 A = (sec^2 A - sin^2 A)/(tan^2 A)

Prove that (sec A + cos A) (sec A - cos A) = tan^2A+sin^2A .

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove that : (cosec A - sin A) (sec A - cos A) sec^(2) A = tan A

Prove that: [1/(sec^(2)A-cos^(2)A)+1/("cosec"^(2)A-sin^(2)A)].sin^(2)A.cos^(2)A=(1-sin^(2)Acos^(2)A)/(2+sin^(2)Acos^(2)A)

Prove: (1-cos^2 A)cdot sec^2B + tan^2B (1-sin^2A) = sin^2A+tan^2B .

Prove that (sin A +cosec A) ^(2) +(cos A +sec A) ^(2) =7+ tan ^(2) A +cot ^(2) A