Home
Class 12
MATHS
7^((log)7x)+2x+9=0...

`7^((log)_7x)+2x+9=0`

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos
  • MASTER PRACTICE PROBLEM

    BANSAL|Exercise Match the column|48 Videos

Similar Questions

Explore conceptually related problems

Solve for x:backslash x^(2)+7^(log_(7)x)-2=0

Differentiate (log)_(7)((log)_(7)x) with respect to x

Solve 4^((log)_(9)x)-6x^((log)_(9)2)+2^((log)_(3)27)=0

Sum of all the solutions of the equation 5^((log_(5)7)^(2x))=7^((log_(7)5)^(x)) is equal to

6-(1+4.9^(4)-2log_(7)3^(3))*log_(7)x=log_(x)7,x in Q

The solution of the equation "log"_pi("log"_(2) ("log"_(7)x)) = 0 , is

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

Statement-1: 3^("log"_(2) 7) -7^("log"_(2)3) = 0 Statement-2: x^("log"_(a)y) = y^("log"_(a)x), " where "x gt 0, y gt 0" and "a gt 0, a ne 1

If log_(12) (log_(7) x) lt 0 , then x belong to ______.

If 7^(log 7(x^(2)-4x + 5))=x - 1 , x may have values