Home
Class 12
MATHS
1/log3 2 + 2/log9 4 - 3/log27 8 = 0...

`1/log_3 2 + 2/log_9 4 - 3/log_27 8 = 0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    BANSAL|Exercise All Questions|436 Videos
  • MASTER PRACTICE PROBLEM

    BANSAL|Exercise Match the column|48 Videos

Similar Questions

Explore conceptually related problems

Which of the following when simplified, vanishes? 1/((log)_3 2)+2/((log)_9 4)-3/((log)_(27)8) (log)_2(2/3)+(log)_4(9/4) -(log)_8(log)_4(log)_2 16 (log)_(10)cot1^0+ (log)_(10)cot2^0+(log)_(10)cot3^0++(log)_(10)cot89^0

det [[log_ (2) 512, log_ (4) 3log_ (3) 8, log_ (3) 9]] xxdet [[log_ (2) 3, log_ (8) 3log_ (3) 4, log_ (3) 4 ]] =

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

The value of |[log_3 1024, log_3 3],[log_3 8, log_3 9]| xx|[log_2 3, log_4 3],[log_3 4, log_3 4]|

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

If "log"_(2) a + "log"_(4) b + "log"_(4) c = 2 "log"_(9) a + "log"_(3) b + "log"_(9) c = 2 "log"_(16) a + "log"_(16) b + "log"_(4) c =2 , then

If log_2 (log_9 x +3/2+ 8^x) = 3x, then value of 27x is equal to