Home
Class 12
MATHS
[hline2," If "y=ae^(mx)+be^(-mx)," then ...

[hline2," If "y=ae^(mx)+be^(-mx)," then find "(d^(2)y)/(dx^(2))],[hline3,]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y =a cos mx + b sin mx, then (d ^(2)y)/(dx ^(2))=

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y = ae^(mx) + be^(-mx),"then"(d^(2)y)/(dx^(2))-m^(2)y = .........................

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .