Home
Class 11
MATHS
If a=1+x^3/(3!)+x^6/(6!)+.....oo, b=x+x...

If `a=1+x^3/(3!)+x^6/(6!)+.....oo, b=x+x^4/(4!)+x^7/(7!)+.....oo , c=x^2/(2!)++x^5/(5!)+x^8/(8!)+.....oo` then the value of `a^3+b^3+c^3-3abc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=1+(x^(3))/(3!)+(x^(6))/(6!)+......oo,b=x+(x^(4))/(4!)+(x^(7))/(7!)+......oo,c=(x^(2))/(2!)++(x^(5))/(5!)+(x^(8))/(8!)+ then the value of a^(3)+b^(3)+c^(3)-3abc.

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

If, y=x-x^2/2+x^3/3-x^4/4+....oo and (|x|lt1) then x=y+y^2/(a!)+y^3/(b!)+......+oo Find a^2+b

Sum 1+3x+5x^(2)+7x^(3)+9x^(4)+...... to oo is (x<1)

If A = 4x^(3) - 5x + 7, B = 2x^(3) -x^(2) + 3 and C = 5x^(3) - 8x^(2) + 10 , then A - 2B - C is

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If (x+7)^(3)+(2x+8)^(3)+(2x+3)^(3)=3(x+7) (2x+8)(2x+3) , then what is the value of x? (a) -3.6 (b) .6 (c) 2.4 (d) -2.4