Home
Class 12
MATHS
If a is defined by f (x)=a(0)x^(n)+a(1)x...

If a is defined by f `(x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)` where n is a non negative integer and `a_(0),a_(1),a_(2),…….,a_(n)` are real numbers and `a_(0) ne 0,` then f is called a polynomial function of degree n. For polynomials we can define the following theorem
(i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a).
(ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0.
The factor of the polynomial `x^(3)+3x^(2)+4x+12` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The remainder when the polynomial P(x) =x^(4)-3x^(2) +2x+1 is divided by x-1 is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The remainder when the polynomial P(x) =x^(4)-3x^(2) +2x+1 is divided by x-1 is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. THe polynomials P(x) =kx^(3)+3x^(2)-3 and Q(x)=2x^(3) -5x+k, when divided by (x-4) leave the same remainder. Then the value of k is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. THe polynomials P(x) =kx^(3)+3x^(2)-3 and Q(x)=2x^(3) -5x+k, when divided by (x-4) leave the same remainder. Then the value of k is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The number of real roots of the equation, (x-1)^(2)+(x-2)^(2)+(x-3)^(2)=0 is

If a is defined by f (x)=a_(0)x^(n)+a_(1)x^(n-2)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n) where n is a non negative integer and a_(0),a_(1),a_(2),…….,a_(n) are real numbers and a_(0) ne 0, then f is called a polynomial function of degree n. For polynomials we can define the following theorem (i) Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and 'a' be a real number. if p(x) is divided by (x-a), then the remainder is equal to p(a). (ii) Factor theorem : Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x-a) is a factor of p(x). Conversely, if (x-a) is a factor of p(x). then p(a)=0. The number of real roots of the equation, (x-1)^(2)+(x-2)^(2)+(x-3)^(2)=0 is

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+a_(n-2)x^(n-2)+.............+a_(1)x+a_(0) where n is a whole number and a_(0),a_(1),a_(2),……………,a_(n)(a_(n)ne0) are all constants, then p(0) =

a_(0)x^(n) + a_(1)x^(n-1) + a_(2)x^(n-2) + ……..a_(n)x^(n) is polynomial of degree ……………

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is