Home
Class 12
MATHS
The shortest distance of the point (a,b,...

The shortest distance of the point `(a,b,c)` from x-axis (A) `sqrt(a^2+b^2)` (B) `sqrt(b^2+c^2)` (C) `sqrt(c^2+a^2)` (D) `sqrt(a^2+b^2+c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the perpendicular drawn from the point P(a , b , c) from z-axis is a. sqrt(a^2+b^2) b. sqrt(b^2+c^2) c. sqrt(a^2+c^2) d. sqrt(a^2+b^2+c^2)

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

The distance of the point P(a ,\ b ,\ c) from the x-axis is a. sqrt(b^2+c^2) b. sqrt(a^2+c^2) c. sqrt(a^2+b^2) d. none of these

The length of the perpendicular drawn from the point P(a,b,c) from z -axis is sqrt(a^(2)+b^(2)) b.sqrt(b^(2)+c^(2)) c.sqrt(a^(2)+c^(2)) d.sqrt(a^(2)+b^(2)+c^(2))

(a) a^2+b^2 (b) a+b (c) a^2-b^2 (d) sqrt(a^2+b^2)

The shortest distance between the line yx=1 and the curve x=y^(2) is (A)(3sqrt(2))/(8) (B) (2sqrt(3))/(8) (C) (3sqrt(2))/(5) (D) (sqrt(3))/(4)

The shortest distance from the point (1,2,-1) to the surface of the sphere x^(2)+y^(2)+z^(2)=54 is a) 3sqrt(6) b) 2sqrt(6) c) sqrt(6) d)2

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

If acostheta-bsintheta=c , then asintheta+bcostheta= (a) +-sqrt(a^2+b^2+c^2) (b) +-sqrt(a^2+b^2-c^2) (c) +-sqrt(c^2-a^2-b^2) (d) None of these