Home
Class 11
MATHS
" (ii) यदि "(x+iy)^((1)/(3))=a+ib," तो स...

" (ii) यदि "(x+iy)^((1)/(3))=a+ib," तो सिद्ध करें कि "(x)/(a)+(y)/(b)=4(a^(2)-b^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+iy)^((1)/(3))=(a+ib) then prove that ((x)/(a)+(y)/(b))=4(a^(2)-b^(2))

If (x + iy)^((1)/(3)) = a+ ib , then ((x)/(a)) + ((y)/(b)) =

(x+iy)^((1)/(3))=a+ibthenprovethat(x)/(a)+(y)/(b)=4(a^(2)-b^(2))

If (x - iy) ^(1//3) = a - ib, then show that (x)/(a) + (y)/(b) = 4 ( a ^(2) - b ^(2)).

If (x+iy)^(1/3)=a+ib,x,y,ab in R. Show that (x)/(a)+(y)/(b)=4(a^(2)-b^(2))( ii) (x)/(a)-(y)/(b)=2(a^(2)+b^(2))

if (x + iy)^(1 / 3) = a + ib , show that (x / a) + (y / b) = 4(a^2 - b^2) .

if (x+iy)^((1)/(3))=a+ib then ((x)/(a))+((y)/(b)) equals to

z=x+iy,z^(1/3)=a-ib,(x)/(a)-(y)/(b)=k(a^(2)-b^(2)) then k is :