Home
Class 12
MATHS
यदि A+B+C=pi हो, तो सिद्ध कीजिए कि - sin...

यदि `A+B+C=pi` हो, तो सिद्ध कीजिए कि - `sinA+sinB-sinC=4"sin"A/2"sin"B/2"cos"C/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If sinA/sinB=sin(A-C)/sin(C-B) then

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

If A+B+C=180^(@) then prove that the following sinA+sinB+sinC=4"cos"A/2"cos"B/2"cosC/2

If A+B+C=2S , prove that: sin(S-A)+sin(S-B)+sin(S-C)-sinS = 4sinA/2sinB/2sinC/2

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC