Home
Class 12
MATHS
If cos (theta - alpha) = p " and " sin(t...

`If cos (theta - alpha) = p " and " sin(theta + beta) = q," show that " p^(2) +q^(2) - 2pq sin (alpha + beta) = cos^(2) (alpha + beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Eliminate theta between a = cos(theta - alpha) , b = sin(theta - beta) and prove that a^(2) -2ab sin(alpha - beta) + b^(2) = cos^(2)(alpha - beta) .

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If sin (theta + alpha) = a and sin (theta + beta) = b,"then" cos 2 (alpha - beta) - 4ab cos (alpha - beta) =

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)