Home
Class 12
MATHS
" For two complex numbers "z(1)" and "z(...

" For two complex numbers "z_(1)" and "z_(2)," we have "|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

For any two complex numbers z_(1) and z_(2), we have |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2), then

For any two complex number z_(1) and z_(2) prove that: |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)-z_(2)|<=|z_(1)|+|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)+z_(2)|>=|z_(1)|-|z_(2)|

For any two complex number z_(1) and z_(2) prove that: |z_(1)+z_(2)|<=|z_(1)|+|z_(2)|

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)