Home
Class 12
MATHS
Let a three-dimensional vector vecV sati...

Let a three-dimensional vector `vecV` satisfies the conditions, `2vecV + (hati + 2hatj) xx vecV = 2hati +hatk`. If `3|vecV|=sqrt(m)`, then find the value of m.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a three- dimensional vector vecV satisfy the condition , 2vecV + vecV xx ( hati + 2hatj ) = 2hati + hatk . If 3|vecV| = sqrtm . Then find the value of m.

If vecu= 2hati-hatj+hatk, vecv = hati + 2 hatj-3 hatk and vecw= 3hati + phatj+ 5 hatk are coplanar find the value of p.

Given vecv_1 = 5hati+2hatj and vecv_2 = ahati-6hatj are perpendicular to each other, determine the value of a

Determine the vector product of vecv_1 = 2hati +3hatj -hatk and vecv_2 = hati+2hatj -3 hatk ,

Find the scalar produt of the two vectors vecv_1=hati +2hatj+3hatk and vecv_2 =3hati +4hatj-5hatk

Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn =0 and vecv.hatn=0 then find the value of |vecw.hatn|

Find unit vector in direction of friction force acting on block vecv_p=7hati-2hatj, vecv_B=3hati+hatj

If vector vecv=(1,sqrt(3)) and vector vecu=(3,-2) find the value of |3vecv-vecu|

If vecv_1 = 3hati+4hatj +hatk and vecv_2 =hati -hatj -hatk , determine the magnitude of vecv_1 +vecv_2 .

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk "to" vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.