Home
Class 12
MATHS
" The value of "int(0)^(1)(tan^(-1)x)/(1...

" The value of "int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx" is."

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Choose the correct answers The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is