Home
Class 12
MATHS
Prove that, (cos A + cos B)^(2)+(sin A ...

Prove that, `(cos A + cos B)^(2)+(sin A + sin B)^(2)=4cos^ (2)((A-B)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A -B)/(2)).

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A +B)/(2)).

Prove that: (cos A+cos B)^(2)+(sin A+sin B)^(2)=4cos^(2)backslash(A-B)/(2)

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

Prove that: (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)backslash(A-B)/(2)

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1