Home
Class 12
MATHS
lim(x to0)(cosax-cosbx)/(x^(2)) is equal...

`lim_(x to0)(cosax-cosbx)/(x^(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(x to 0) ( tan x - sin x)/x^(2) is equal to

Lt_(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

Evaluate the following Limits lim_(xto0)(cosax-cosbx)/(1-cosx)

Lt_(x to0)(log(1+3x))/(sin 4x) is equal to

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

If lim_(x to0)(cos x+asinbx)^(1/x)=e^(2) then the values of a and b are

Lt_(x to 0) (1-cosax)/(xsin2x)=

Evaluate {:("Lt"),(xrarr0):}(cosax-cosbx)/(x^(2))