Home
Class 12
MATHS
If alpha and beta are the roots of the e...

If `alpha and beta` are the roots of the equation `ax^(2)+bx+c=0` , then show that `underset(xrarralpha)"lim"(1-cos(ax^(2)+bx+c))/((x-alpha)^(2))=(a^(2))/(2)(alpha-beta)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 then (alpha+beta)^(2) is …………..

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

If alpha and beta be the roots of the quadratic equation ax^2+bx+c=0 then evaluate lim_(xrarralpha)(1-cos(ax^2+bx+c))/((x-alpha)^2)

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

IF alpha and beta be the roots of the equation ax^2+bx+c=0 , find the values of alpha^2+beta^2

If alpha and beta are thr roots of the equation ax^(2) + bx + c = 0 then ( alpha + beta )^(2) is ……… .

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+c=0, then evaluate lim_(x rarr(1)/(a))sqrt((1-cos(cx^(2)+bx+a))/(2(1-alpha x)^(2)))

If alpha. beta are roots of the equation ax^(2)+bx+c=0 and alpha-beta=alpha*beta then

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 . Then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to