Home
Class 11
MATHS
The greatest value of n for which the de...

The greatest value of n for which the determinant
`Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))|` is divisible by `3^(n)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^n is a factor of the determinant |{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}| then the maximum value of n is ……..

|{:(1,1,1),(""^(n)c_1,""^(n+1)c_1,""^(n+2)c_1),(""^(n+1)c_2,""^(n+2)c_2,""^(n+3)c_2):}|=1

If 3^n is a factor of the determinant [[1,1,1],[n C_(1),(n+3) C_(1) ,(n+6) C_(1) ],[n C_(2) ,(n+3) C_(2) ,(n+6) C_(2)]] then the maximum value of n is

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to