Home
Class 10
MATHS
Check whether 6^(n) can end with the...

Check whether `6^(n)` can end with the digit '0' (zero) for any natural number n .

Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    VK GLOBAL PUBLICATION|Exercise HOTS (Higher Order Thinking Skills)|3 Videos
  • REAL NUMBERS

    VK GLOBAL PUBLICATION|Exercise Proficiency Exercise (Very Short Answer Questions)|8 Videos
  • REAL NUMBERS

    VK GLOBAL PUBLICATION|Exercise Short Answer Questions -II|11 Videos
  • QUADRATIC EQUATIONS

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • TRIANGLES

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|10 Videos

Similar Questions

Explore conceptually related problems

Check whether can end with the digit 0 for any natural number n.

Check whether 6^(n) can end with the digit 0 for any natural number n.

Show that 12^(n) cannot end with the digits 0 or 5 for any natural number n

Check whether 15^(n) can end with digit zero for any natural number n.

Check whether 12^n can end with the digit 0 for any natural number n.

Can 15^(n) end with the digit 0 , for any natural number n . Justify your answer .

Show that 9^n cannot end with the digit 2 for any n in N .

Assertion (A): 6^(n) ends with the digit zero where n is a natural number. Reason (R):Any number ends with digit zero, if its prime factor is of the form 2^(m)xx5^(n) , where m,n are natural numbers.

p^(n)=(axx5)^(n) For p^(n) to end with the digit zero a- ________________ for natural number of n.