Home
Class 10
MATHS
If alpha, beta are zeroes of polynomial ...

If `alpha, beta` are zeroes of polynomial `6x^(2) +x-1`, then find the value of
(i) `alpha^(3) beta + alpha beta^(3)`, (ii) `alpha/beta + beta/alpha +2(1/alpha + 1/beta) + 3 alpha beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of (i) \( \alpha^3 \beta + \alpha \beta^3 \) and (ii) \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta \), where \( \alpha \) and \( \beta \) are the roots of the polynomial \( 6x^2 + x - 1 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) The polynomial is given as: \[ p(x) = 6x^2 + x - 1 \] Using the quadratic formula: \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 6, b = 1, c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 6 \cdot (-1) = 1 + 24 = 25 \] Now substituting into the quadratic formula: \[ \alpha, \beta = \frac{-1 \pm \sqrt{25}}{2 \cdot 6} = \frac{-1 \pm 5}{12} \] Calculating the roots: 1. \( \alpha = \frac{-1 + 5}{12} = \frac{4}{12} = \frac{1}{3} \) 2. \( \beta = \frac{-1 - 5}{12} = \frac{-6}{12} = -\frac{1}{2} \) ### Step 2: Calculate \( \alpha^3 \beta + \alpha \beta^3 \) Using the values of \( \alpha \) and \( \beta \): \[ \alpha^3 \beta + \alpha \beta^3 = \alpha \beta (\alpha^2 + \beta^2) \] First, calculate \( \alpha \beta \): \[ \alpha \beta = \frac{1}{3} \cdot \left(-\frac{1}{2}\right) = -\frac{1}{6} \] Next, calculate \( \alpha^2 + \beta^2 \): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Calculating \( \alpha + \beta \): \[ \alpha + \beta = \frac{1}{3} - \frac{1}{2} = \frac{2 - 3}{6} = -\frac{1}{6} \] Now substituting: \[ (\alpha + \beta)^2 = \left(-\frac{1}{6}\right)^2 = \frac{1}{36} \] Now substituting into the equation: \[ \alpha^2 + \beta^2 = \frac{1}{36} - 2\left(-\frac{1}{6}\right) = \frac{1}{36} + \frac{1}{3} = \frac{1}{36} + \frac{12}{36} = \frac{13}{36} \] Now substituting back into \( \alpha^3 \beta + \alpha \beta^3 \): \[ \alpha^3 \beta + \alpha \beta^3 = -\frac{1}{6} \cdot \frac{13}{36} = -\frac{13}{216} \] ### Step 3: Calculate \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta \) Calculating \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \): \[ \frac{\alpha}{\beta} = \frac{\frac{1}{3}}{-\frac{1}{2}} = -\frac{2}{3}, \quad \frac{\beta}{\alpha} = \frac{-\frac{1}{2}}{\frac{1}{3}} = -\frac{3}{2} \] Now adding: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = -\frac{2}{3} - \frac{3}{2} = -\frac{4}{6} - \frac{9}{6} = -\frac{13}{6} \] Calculating \( 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) \): \[ \frac{1}{\alpha} = 3, \quad \frac{1}{\beta} = -2 \] So: \[ \frac{1}{\alpha} + \frac{1}{\beta} = 3 - 2 = 1 \] Thus: \[ 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = 2 \cdot 1 = 2 \] Calculating \( 3\alpha\beta \): \[ 3\alpha\beta = 3 \cdot -\frac{1}{6} = -\frac{1}{2} \] Now combining everything: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta = -\frac{13}{6} + 2 - \frac{1}{2} \] Converting \( 2 \) and \( -\frac{1}{2} \) to sixths: \[ 2 = \frac{12}{6}, \quad -\frac{1}{2} = -\frac{3}{6} \] So: \[ -\frac{13}{6} + \frac{12}{6} - \frac{3}{6} = -\frac{13 - 12 - 3}{6} = -\frac{4}{6} = -\frac{2}{3} \] ### Final Answers: (i) \( \alpha^3 \beta + \alpha \beta^3 = -\frac{13}{216} \) (ii) \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta = -\frac{2}{3} \)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|12 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POST-MID TEAM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are zeroes of polynomial p(x) = x^(2) - 5x +6 , then find the value of alpha + beta - 3 alpha beta

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).

If alpha, beta are the zeros of the polynomial x^2 + x - 6 , find the value of 1/alpha^(2) + 1/beta^(2) .

If alpha and beta be the zeros of the polynomial x^(2)+x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are the zeroes of polynomial x^2+x+1 .So find the value of 1/alpha-1/beta.

If alpha,beta are the zeroes of the polynomials f(x)=x^(2)-3x+6 then find the value of (1)/(alpha)+(1)/(beta)+alpha^(2)+beta^(2)-2 alpha beta

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .