Home
Class 10
MATHS
If DeltaABC~DeltaPQR,(ar(DeltaABC))/(ar(...

If `DeltaABC~DeltaPQR,(ar(DeltaABC))/(ar(DeltaPQR))=16/9`,AB=2cm and AC= 12 cm, then find the value of PR.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the relationship between the areas of similar triangles Given that triangles \( \Delta ABC \) and \( \Delta PQR \) are similar, the ratio of their areas is equal to the square of the ratio of their corresponding sides. ### Step 2: Set up the equation for the areas We know that: \[ \frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{AC}{PR}\right)^2 \] Given that: \[ \frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{16}{9} \] ### Step 3: Relate the sides using the area ratio From the area ratio, we can write: \[ \left(\frac{AC}{PR}\right)^2 = \frac{16}{9} \] ### Step 4: Take the square root of both sides Taking the square root of both sides gives us: \[ \frac{AC}{PR} = \frac{4}{3} \] ### Step 5: Substitute the known value of AC We know that \( AC = 12 \, cm \). Substituting this value into the equation gives: \[ \frac{12}{PR} = \frac{4}{3} \] ### Step 6: Cross-multiply to solve for PR Cross-multiplying gives us: \[ 12 \cdot 3 = 4 \cdot PR \] \[ 36 = 4 \cdot PR \] ### Step 7: Isolate PR Now, divide both sides by 4: \[ PR = \frac{36}{4} = 9 \, cm \] ### Final Answer Thus, the value of \( PR \) is \( 9 \, cm \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER TYPE QUESTIONS-II)|39 Videos
  • TRIANGLES

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|15 Videos
  • TRIANGLES

    VK GLOBAL PUBLICATION|Exercise HOTS (High Order Thinking Skills)|7 Videos
  • REAL NUMBERS

    VK GLOBAL PUBLICATION|Exercise Self -Assessment Test|11 Videos
  • VALUE-BASED QUESTIONS

    VK GLOBAL PUBLICATION|Exercise Unit-VII : (Statistics & Probability)|8 Videos

Similar Questions

Explore conceptually related problems

If DeltaABC~DeltaQRP,(ar(DeltaABC))/(ar(DeltaPQR))=9/4 , AB= 18 cm and BC= 15 cm, then PR is equal to

If Delta ABC~Delta QRP, (ar (Delta ABC))/(ar (Delta PQR))=(9)/(4), AB=18 cm, and BC= 15 cm, then PR=?

Let DeltaABC~DeltaQPR and (ar(DeltaABC))/(ar(DeltaPQR))=9/(16) . If AB=12 cm , BC=6 cm and AC=9 cm , then PR is equal to :

Let DeltaABC~DeltaPQR and (ar (DeltaABC))/(ar (DeltaPQR))=4/(25) . If AB=12cm, BC = 8cm and AC=10cm then QR is equal to

DeltaABC~DeltaPQR . If A(DeltaABC)=25 , A(DeltaPQR)=16 find AB : PQ .

Delta ABC ~ Delta PQR and ar(DeltaABC)=4ar(DeltaPQR) IF BC=12cm then find QR

DeltaABC~DeltaPQR , if area of DeltaABC = 81cm^(2) ,area of DeltaPQR =169cm^(2) and AC =7.2cm,find the length of PR.

Choose the correct alternative. DeltaABC and DeltaPQR are equilateral triangles. If A(DeltaABC) : A(DeltaPQR) = 1 : 16, and AB = 2 cm, then what is the length of PR?