Home
Class 10
MATHS
In Delta ABC, right angled at B. If tan ...

In `Delta ABC`, right angled at `B`. If `tan A= (1)/(sqrt3)`, find the value of `sin A. cos C+ cos A sin C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the value of \( \sin A \cos C + \cos A \sin C \) given that \( \tan A = \frac{1}{\sqrt{3}} \) in triangle \( ABC \) which is right-angled at \( B \). ### Step 1: Understanding the Triangle We have triangle \( ABC \) with a right angle at \( B \). Since \( \tan A = \frac{1}{\sqrt{3}} \), we can interpret this in terms of the sides of the triangle. ### Step 2: Setting Up the Sides From the definition of tangent: \[ \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{AB}{BC} \] Let \( AB = K \) (the opposite side) and \( BC = \sqrt{3}K \) (the adjacent side). ### Step 3: Finding the Hypotenuse Using the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting the values: \[ AC^2 = K^2 + (\sqrt{3}K)^2 = K^2 + 3K^2 = 4K^2 \] Thus, \[ AC = 2K \] ### Step 4: Finding \( \sin A \) Using the definition of sine: \[ \sin A = \frac{AB}{AC} = \frac{K}{2K} = \frac{1}{2} \] ### Step 5: Finding \( \cos A \) Using the definition of cosine: \[ \cos A = \frac{BC}{AC} = \frac{\sqrt{3}K}{2K} = \frac{\sqrt{3}}{2} \] ### Step 6: Finding \( \sin C \) Since \( C = 90^\circ - A \), we can use the complementary angle identity: \[ \sin C = \cos A = \frac{\sqrt{3}}{2} \] ### Step 7: Finding \( \cos C \) Using the complementary angle identity: \[ \cos C = \sin A = \frac{1}{2} \] ### Step 8: Calculating \( \sin A \cos C + \cos A \sin C \) Now we can substitute the values we found: \[ \sin A \cos C + \cos A \sin C = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) \] Calculating each term: \[ = \frac{1}{4} + \frac{3}{4} = 1 \] ### Final Answer Thus, the value of \( \sin A \cos C + \cos A \sin C \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER-5 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-C|9 Videos
  • MODEL QUESTION PAPER-5 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos
  • MODEL QUESTION PAPER-5 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos
  • MODEL QUESTION PAPER-10 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos
  • MODEL QUESTION PAPER-6

    VK GLOBAL PUBLICATION|Exercise SECTION-D|7 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC right angled at B, if tan A = (1)/( sqrt(3)) , find the value of cos A cos C - sin A sin C

In a Delta ABC right angled at C, if tan A=(1)/(sqrt(3)), find the value of sin A cos B+cos A sin B

In triangle ABC, right-angled at B. if tan A = 1/sqrt(3) ,find the value of: sin A cos C+cos A sin C

In triangle ABC, right-angled at B. if tanA=1/(sqrt(3)) find the value of: (i) sin A cos C+cos A sin C(i i) cos A cos C sin A sin C

In ABC, right angled at B, if tan A=(1)/(sqrt(3)) find the value of sin A cos C+cos A sin C(ii)cos A cos C-sin A sin C

In a ABC, right angled at A, if tan C=sqrt(3) , find the value of sin B cos C+cos B sin C

In a triangle ABC,k right angled at B, if tan A = (1)/(sqrt3). Find the value of cos A.cosC-sinA.sinC.

If in a triangle ABC right angled at B, AB = 6 units and BC = 8 units, then find the value of sin A. cos C + cos A. sin C.

In a Delta ABC ,angle C=90^(@)and tan A=(1)/(sqrt(3)). find the values of : (i) (sin A*cos B+ cos A*sin B ) " " (ii) (cos A*cos B-sin A*sin B)