Home
Class 10
MATHS
Evaluate (cos 45^(@))/(sec 30^(@) + cos ...

Evaluate `(cos 45^(@))/(sec 30^(@) + cos 30^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\frac{\cos 45^\circ}{\sec 30^\circ + \cos 30^\circ}\), we will follow these steps: ### Step 1: Find the values of \(\cos 45^\circ\), \(\sec 30^\circ\), and \(\cos 30^\circ\). - The value of \(\cos 45^\circ\) is \(\frac{1}{\sqrt{2}}\). - The value of \(\sec 30^\circ\) is \(\frac{1}{\cos 30^\circ}\). Since \(\cos 30^\circ = \frac{\sqrt{3}}{2}\), we have: \[ \sec 30^\circ = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}. \] - The value of \(\cos 30^\circ\) is \(\frac{\sqrt{3}}{2}\). ### Step 2: Substitute the values into the expression. Now substituting these values into the expression: \[ \frac{\cos 45^\circ}{\sec 30^\circ + \cos 30^\circ} = \frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{2}}. \] ### Step 3: Simplify the denominator. To simplify the denominator \(\frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{2}\), we need a common denominator. The common denominator of \(\sqrt{3}\) and \(2\) is \(2\sqrt{3}\). Rewriting each term: \[ \frac{2}{\sqrt{3}} = \frac{2 \cdot 2}{\sqrt{3} \cdot 2} = \frac{4}{2\sqrt{3}}, \] \[ \frac{\sqrt{3}}{2} = \frac{\sqrt{3} \cdot \sqrt{3}}{2 \cdot \sqrt{3}} = \frac{3}{2\sqrt{3}}. \] Now adding them together: \[ \frac{4}{2\sqrt{3}} + \frac{3}{2\sqrt{3}} = \frac{4 + 3}{2\sqrt{3}} = \frac{7}{2\sqrt{3}}. \] ### Step 4: Substitute back into the expression. Now substituting this back into the expression, we have: \[ \frac{\frac{1}{\sqrt{2}}}{\frac{7}{2\sqrt{3}}} = \frac{1}{\sqrt{2}} \cdot \frac{2\sqrt{3}}{7} = \frac{2\sqrt{3}}{7\sqrt{2}}. \] ### Step 5: Rationalize the denominator. To rationalize the denominator, multiply the numerator and denominator by \(\sqrt{2}\): \[ \frac{2\sqrt{3} \cdot \sqrt{2}}{7\sqrt{2} \cdot \sqrt{2}} = \frac{2\sqrt{6}}{14} = \frac{\sqrt{6}}{7}. \] ### Final Answer: Thus, the value of the expression \(\frac{\cos 45^\circ}{\sec 30^\circ + \cos 30^\circ}\) is \(\frac{\sqrt{6}}{7}\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER -7

    VK GLOBAL PUBLICATION|Exercise SECTION -C|10 Videos
  • MODEL QUESTION PAPER -7

    VK GLOBAL PUBLICATION|Exercise SECTION -D|8 Videos
  • MODEL QUESTION PAPER -7

    VK GLOBAL PUBLICATION|Exercise SECTION -D|8 Videos
  • MODEL QUESTION PAPER -2 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|10 Videos
  • MODEL QUESTION PAPER 3[UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION D|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (cos 45^(@))/(sec30^(@)+"cosec "30^(@))

Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

Evaluate : (sin 30^(@) + tan45^(@) - cosec 60^(@))/(sec 30^(@) + cos 60^(@) + cot 45^(@))

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))

Evaulate : (tan45^(@))/("cosec "30^(@))+(sec60^(@))/(cot45^(@))-(2sin90^(@))/(cos0^(@)) .

Evaluate 3 cos^(2) 30^(@) +sec^(2) 30^(@) +2 cos 0^(@) + 3sin 90^(@) -tan^(2) 60^(@)